
o
c

f
p
t
a
c
u
a
b
h
a
(
p
r
t
p
c
R

Journal of Magnetic Resonance145,8–17 (2000)
doi:10.1006/jmre.2000.2068, available online at http://www.idealibrary.com on
Cross Correlations in the Longitudinal Relaxation
of Strongly Coupled Spins

Kavita Dorai*,1 and Anil Kumar*,†,2

*Department of Physics and†Sophisticated Instruments Facility, Indian Institute of Science, Bangalore, India 560012

Received July 2, 1999; revised February 28, 2000
ry

om
s i
ax
ich

mo
wn

com
an
ctu
em
co
eq
ul-
a

ng
f th
re

ions)
due

ly to

fi ne a
s pled
s uring
t usive
s s will
b odes
d t of
r

tion
m rious
z ators,
c s so
d as
o hich
r any
s ed in
i (for
e n be
e
i s, a
s aving
a -
m ed as
s with
s ning
a sible
a lete
L

ations
i terest
( the
m have
n rest.
S of
s spin
s corre-

mr
A generalized set of magnetization modes for quantifying cross-
correlation contributions to longitudinal relaxation in strongly
coupled spin systems is described in this paper. Such a set of
modes (called longitudinal multiple-quantum modes) is used to
unravel cross-correlation information in strongly coupled systems,
where the strength of the J coupling tends to obscure such effects.
The applicability of such methods is demonstrated for a small
molecule which exhibits some strong coupling effects even at high
magnetic field strengths. The contribution of “remote” cross cor-
relations to the longitudinal relaxation of strongly coupled spins is
detailed. © 2000 Academic Press

Key Words: strong coupling; cross correlations; single-transition
perators; longitudinal multiple-quantum modes; remote cross
orrelations.

I. INTRODUCTION

The Redfield–Bloch semiclassical density operator theo
widely used to quantify spin relaxation (1, 2). Although the
orm of the Redfield equation is mathematically elegant, c
uting individual matrix elements for different spin system

edious and often provides little insight into multispin rel
tion. A transformation to the basis of “modes,” many of wh
an be directly related to physical observables, proves
seful (3–6). For longitudinal relaxation, these modes (kno
s “magnetization modes”) are essentially various linear
inations of the populations of different energy levels,
ave been used with great success to gain tangible stru
nd dynamic information in weakly coupled spin syst
7, 8). Signatures of cross-correlation processes in weakly
led spin systems are immediately recognizable as an un
ecovery of different transitions of a spin multiplet—the “m
iplet effect.” It is not as evident when second-order effects
resent, and most previous work on relaxation in stro
oupled systems has remained within the framework o
edfield relaxation matrix (9–14). It has been noted that the
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are additional pathways (apart from those of cross correlat
for the creation of longitudinal spin order in such systems,
to the fact that strong coupling factors contribute unequal
the relaxation rates of various transitions of a spin (15–17). At
rst sight, it appears as if it is no longer possible to defi
imple basis set of magnetization modes for strongly cou
pins and that the emergence of longitudinal spin order d
he course of a relaxation experiment is no longer an excl
ignature of cross-correlation processes. Nevertheless, a
e shown, an attempt to retain the idea of magnetization m
oes lead to a conceptual simplification in the treatmen
elaxation in such systems.

We define a complete orthonormal set of magnetiza
odes corresponding to the expectation values of va

ero-quantum and double-quantum single-transition oper
alculated in the eigenbasis. We call our set of mode
efined “longitudinal multiple-quantum modes (LMQM),
pposed to the usual single-spin or multispin modes, w
efer to longitudinal spin order. These modes are valid for
pin system, regardless of the coupling information encod
t. For systems with an inherent molecular symmetry
xample, magnetically equivalent spins), this symmetry ca
xploited to define a set of symmetrized modes (21–23). Sim-

larly, for systems of nonequivalent (weakly coupled) spin
et of multispin order modes can be defined, each mode h
well-defined parity under spin inversion (24, 25). Such sym
etrized and/or multispin modes can always be construct

ubsets of the more general LMQM modes. For systems
trong coupling and no inherent molecular symmetry, defi
simplified set of magnetization modes is no longer pos

nd one has to remain within the matrix of the comp
MQM modes (Fig. 1).
Recent experiments designed to measure cross correl

n transverse spin relaxation have generated much in
26–28). An interesting feature of these experiments is
easurement of “remote” cross correlations, terms which
o explicit distance dependence from the spin of inte
everal workers (29–32) have pointed out the existence
uch terms in the transverse relaxation of weakly coupled
ystems. We note in this paper that such remote cross
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9LONGITUDINAL RELAXATION OF STRONGLY COUPLED SPINS
lations affect the longitudinal relaxation as well of stron
coupled spins.

II. LONGITUDINAL MULTIPLE-QUANTUM
MAGNETIZATION MODES

This paper concentrates on two relaxation mechanisms
inant at high magnetic fields, namely the intramolecular
pole–dipole (DD) interaction and the chemical shift anisotr
(CSA) of spin1

2 nuclei. The evolution equation of the orth
normalized modes {n i} has the same structure as the Redfi
equation,

d

dt
n i~t! 5 O

j51

2 n

G ijn j~t!, [1]

hereG ij is a 2n 3 2n symmetric matrix. The density opera
an be expanded in terms of a complete set of orthogona
perators {Bs} with many possibilities for such basis sets.

prefer to express magnetization modes as combinatio
single-transition operators (18–20). A single-transition opera
or is associated with the transition between two arbit
nergy levelsur & andus&, which may represent a zero-, sing
r multiple-quantum transition and can be treated as a v

wo-level system. The operators can be characterized th

^i uI 0
rsuj & 5 ~d ird jr 1 d isd js!

^i uI x
rsuj & 5 ~d ird js 1 d isd jr!/ 2

^i uI y
rsuj & 5 i ~2d ird js 1 d isd jr!/ 2

^i uI z
rsuj & 5 ~d ird jr 2 d isd js!/ 2. [2]

hese operators are defined in the eigenbase of the Ha
ian which makes them a suitable choice for descri
trongly coupled spins.

. LMQM Modes for an AB System

The LMQM modes and their operator representatio
ifferent bases (single transition and product operator) as

FIG. 1. The classification of magnetization mode sets for different
systems.
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as the population combinations corresponding to these m
for a two-spin strongly coupled system (AB) are represent
Table 1.

The superscript (1, 4) refers to the double quantum an
3) to the zero quantum of the AB spin system (with
eigenstates labeled asu1& 5 uaa&, u2& 5 cosuuab& 1 sin uuba&,
u3& 5 2sin uuab& 1 cosuuba&, andu4& 5 ubb&, where tanu 5
J/dAB, J being the coupling constant anddAB the difference in
chemical shifts of the spins). A valid basis set of magnetiza
modes for this strongly coupled two-spin system (Table
one that remains within the zero-quantum–double-qua
subspace of the single-transition operators (18–20). In the
weak coupling limit (u3 0), the operator definitions in Tab
1 reduce to that for an AX spin system. Since single-
magnetizationsAZ and BZ are well-defined quantities f
weakly coupled systems (AX), one can construct the mult
modes (commonly used in most experiments) as linear
binations of these LMQM modes. The evolution of the LMQ
modes for the AB system is obtained as:

2
d

dt 3
1
2 ^I 0

1,4 1 I 0
2,3&

Î2 ^I Z
1,4&

Î2 ^I Z
2,3&

1
2 ^I 0

1,4 2 I 0
2,3&

4
5 3

0 0 0 0
0 r1,4~A ! s 2,3

1,4~A 1 C! d 1,4–2,3
1,4 ~C!

0 s 2,3
1,4~A 1 C! r2,3~A 1 C! d 1,4–2,3

2,3 ~A 1 C!
0 d 1,4–2,3

1,4 ~C! d 1,4–2,3
2,3 ~A 1 C! r1,4–2,3~A !

4
3 3

1
2 ^I 0

1,4 1 I 0
2,3&

Î2^D~I Z
1,4!&

Î2^D~I Z
2,3!&

1
2 ^D~I 0

1,4 2 I 0
2,3!&

4 . [3]

TABLE 1
The LMQM Modes for the AB System, Defined in the

Eigenbasis of the Static Hamiltonian

LMQM modes in
eigenbasis Product operator modes Population combina

1
2^I 0

1,4 1 I 0
2,3& ^1

21& 1
2(P1 1 P2 1 P3 1 P4)

=2^I Z
1,4& 1

Î2
^AZ 1 BZ&

1

Î2
(P1 2 P4)

=2^I Z
2,3& 1

Î2
{cos 2u^AZ 2 BZ& 2

sin 2u^A1B2 1 A2B1&}

1

Î2
(P2 2 P3)

1
2^I 0

1,4 2 I 0
2,3& ^2AZBZ&

1
2(P1 2 P2 2 P3 1 P4)

Note.The product operator definitions and corresponding population
binations are also shown.

n
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10 DORAI AND KUMAR
The rm terms in the real symmetricG matrix for the AB
system defined above denote the self-relaxation of a LM
modem while the sn

m (5sm
n) and dn

m (5dm
n) terms refer to th

cross relaxation between LMQM modesm and n. The A
signifies the presence of autocorrelation terms in the elem
the relaxation matrix and theC denotes cross-correlati
terms. TheD in ^Dm& denotes the deviation of modem from its
thermal equilibrium value. The factorization of the matrixG
into two blocks corresponding to symmetric and antisymm
modes (which do not couple unless CSA–DD cross cor
tions are present), valid for weakly coupled spins, is now
longer possible, as the concept of spin inversion symme
not meaningful for strongly coupled spins.

The various elements of the AB relaxation matrix are
tained in terms of spectral densities as

r1,4 5 22JAA~v! 2 2JBB~v! 2 JABAB~v! 2 4JABAB~v!

s 1,4
2,3 5 22 cos 2uJAA~v! 1 2 cos 2uJBB~v!

22 sin 2uJAB
A ~v! 2 2 sin 2uJAB

B ~v!

d 1,4–2,3
1,4 5 2Î2@ JAB

A ~v! 1 JAB
B ~v!#

r2,3 5 2 4
3~1 2 cos 4u !~ JAA~0! 1 JBB~0!! 2 2JAA~v!

2 2JBB~v! 1 8
3~1 2 cos 4u !JAB~0!

2 1
3~1 1 cos 4u !JABAB~0! 2 JABAB~v!

1 4
3 sin 4uJAB

A ~0! 2 4
3 sin 4uJAB

B ~0!

d 1,4–2,3
2,3 5 2Î2 cos 2uJAB

A ~v! 2 2Î2 cos 2uJAB
B ~v!

1 4Î2 sin 2uJAB~v! 1 2Î2 sin 2uJABAB~v!

r1,4–2,35 24JAA~v! 2 4JBB~v! 2 2JABAB~v!. [4]

ij here refers to the cross-correlation spectral density bet
the CSAs of spinsi and j , Jii denotes the autocorrelati
spectral density of the CSA of spini , Jij

k denotes the cros
correlation spectral density of the CSA of spink with the
dipole of i and j , and Jijkl refers to the dipolar interactio

etween the pairs of dipolesij and kl. The expressions fo
these spectral densities are contained in (33). It is to be noted
that thed1,4–2,3

1,4 term of theG relaxation matrix, which couple
he modeŝ I z

1,4& and^I z
1,4 2 I z

2,3&, is free from strong couplin
nd has contributions solely from CSA–DD cross correlati
he measurement of this relaxation rate (in the initial
pproximation) is hence a direct measure of such cross c

ations. The1
2^I 0

1,4 1 I 0
2,3& mode is the sum of all the lev

opulations and hence does not evolve in time. The1
2^I 0

1,4 2
I 0

2,3& signifies longitudinal two-spin order and can be cre
from the=2^I Z

1,4& mode via cross correlations alone and fr
the =2^I Z

2,3& mode from a combination of auto- and cro
correlation terms with strong coupling factors.
M
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The picture simplifies in the weak coupling limit as now b
the =2^IZ

1,4& and the=2^IZ
2,3& modes evolve into longitudin

two-spin order solely through CSA–DD cross correlations an
modes self-relax solely through autocorrelation terms.

B. LMQM Modes for an ABX System

An orthonormalized set of LMQM modes for a three-s
ABX system (with two of the spins A and B strongly coup
to each other and weakly coupled to spin X), is define
Table 2.

The superscripts (1, 7) and (2, 8) refer to the two do
quanta of the A and the B spins while (3, 4) and (5, 6) refe
the zero quanta of these spins (whereu1& 5 aaa, u2& 5 aab,
u3& 5 cos u1aba 1 sin u1baa, u4& 5 2sin u1aba 1 cos
u1baa, u5& 5 cosu2abb 1 sin u2bab, u6& 5 2sin u2abb 1
cos u2bab, u7& 5 bba, and u8& 5 bbb, with the usual defi-
nitions of u6 (34)). The labels (1, 2), (3, 5), (4, 6), and (7,
refer to the single-quantum transitions of the X spin. Here
single-transition operator basis for the LMQM modes enc
passes the double-quantum–zero-quantum subspace of t
strongly coupled spins and the single-quantum subspace
weakly coupled spin.

Although the overall structure of theG matrix for the ABX
system is rather complex, it is interesting to note the existen
some off-diagonal relaxation terms that arise purely from c
correlations and are free from any strong coupling effects. T
G (relaxation) matrix elements in terms of spectral densities

G 2,5 5 2Î2@ JAB
A ~v! 1 JAB

B ~v!#

G 2,6 5 2@ JAX
A ~v! 1 JBX

B ~v!#

G 2,8 5 2Î2@ JABAX ~v! 1 JABBX~v!#

G 4,6 5 2Î2@ JAX
X ~v! 1 JBX

X ~v!#

G 4,8 5 22JAXBX ~v!. [5]

The modeŝ m2& and ^m5& are coupled through a sum of t
CSA–DD cross-correlation ratesJAB

A (v) andJAB
B (v). The sum

f the two CSA–DD ratesJAX
A (v) andJBX

B (v) can be estimate
from the evolution of modêm6& from the modê m2& or vice
ersa. The modeŝm2& and^m8& are coupled through a sum
he DD–DD cross-correlation ratesJABAX (v) andJABBX(v). The
mode^m4& is relaxation coupled to the mode^m6& through the

SA–DD ratesJAX
X (v) andJBX

X (v). This mode also couples
the mode^m8& solely through the dipolar cross-correlat
spectral densityJAXBX (v).

Physical observables, LMQM modes, and experiments
strongly coupled system.In general, sets of LMQM mode
are designed to be directly relatable to experimental lin
tensities, thus preserving their intuitive physical interpreta
The density matrix during the relaxation period remains d
onal (for experiments designed to measure longitudinal r
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11LONGITUDINAL RELAXATION OF STRONGLY COUPLED SPINS
ation). Hence a read pulse is required at the end of the evo
interval to convert magnetization modes into observable ma
tization. The various LMQM modes are linear combination
standard line intensities (SLIs (35)), where SLIs are experimen
ine intensities obtained by a small angle detection pulse.

The AB spin system.In terms of standard line intensiti
he modes are given by (36)

Î2I Z
1,4& 5

1

Î2
F L13

~1 2 sin 2u !
1

L24

~1 1 sin 2u !

1
L12

~1 1 sin 2u !
1

L34

~1 2 sin 2u !G
Î2^I Z

2,3& 5
1

Î2
F L13

~1 2 sin 2u !
1

L24

~1 1 sin 2u !

2
L12

~1 1 sin 2u !
2

L34

~1 2 sin 2u !G
1

2
^I 0

1,4 2 I 0
2,3& 5 F L13

~1 2 sin 2u !
2

L24

~1 1 sin 2u !G
5 F L12

~1 1 sin 2u !
2

L34

~1 2 sin 2u !G . [6]

TAB
The LMQM Modes Defin

Mode label LMQM modes in eigenbasis

^m1&
1

2Î2
^I 0

1,7 1 I 0
2,8 1 I 0

3,4 1 I 0
5,6& ^ 1

2Î

^m2& ^I Z
1,7 1 I Z

2,8& ^AZ

^m3& ^I Z
3,4 1 I Z

5,6& [1
2{(c

(s
A
2
2

^m4&
1

Î2
^I Z

1,2 1 I Z
3,5 1 I Z

4,6 1 I Z
7,8& 1

Î2

^m5&
1

2Î2
^I 0

1,7 1 I 0
2,8 2 I 0

3,4 2 I 0
5,6& 1

Î2

^m6& ^I Z
1,7 2 I Z

2,8& ^2(A

^m7& ^I Z
3,4 2 I Z

5,6& [1
2{(c

(s
A
2
2

^m8&
1

Î2
^I Z

1,2 2 I Z
3,5 2 I Z

4,6 1 I Z
7,8& 1

Î2
ion
e-
f

The ABX spin system.The modes of interest to us (sin
they directly encode cross-correlation information) are give
terms of SLIs by

^m2& 5
1

2 F L14

1 2 sin 2u1
1

L26

1 2 sin 2u2
1

L37

1 1 sin 2u1

1
L58

1 1 sin 2u2
1

L13

1 1 sin 2u1
1

L25

1 2 sin 2u2

1
L47

1 2 sin 2u1
1

L68

1 2 sin 2u2
G

^m4& 5 FL12 1 L78 1
1

2 H L35

cos2~u1 2 u2!

1
L46

cos2~u1 2 u2!
1

L45

sin2~u1 2 u2!

1
L36

sin2~u1 2 u2!JG
^m5& 5 Î2F L14

1 2 sin 2u1
1

L26

1 2 sin 2u2

2
L37

1 1 sin 2u1
2

L58

1 1 sin 2u2
G

2
for an ABX Spin System

Product operator modes Population combinat

1

2Î2
(P1 1 P2 1 P3 1 P4 1

P5 1 P6 1 P7 1 P8)

BZ&
1
2(P1 1 P2 2 P7 2 P8)

2u1 1 cos 2u2)^AZ 2 BZ& 1
2u1 1 sin 2u2)^A1B2 1
&} 1 {(cos 2u1 2 cos

^AZ 2 BZ& 1 (sin 2u2 2 sin
^A1B2 1 A2B1&} XZ]

1
2(P3 2 P4 1 P5 2 P6)

& 1

2Î2
(P1 2 P2 1 P3 1 P4

2 P5 2 P6 1 P7 2 P8)

ZBZ&
1

2Î2
(P1 1 P2 2 P3 2 P4

2 P5 2 P6 1 P7 1 P8)

BZ)XZ&
1
2(P1 2 P2 2 P7 1 P8)

2u1 2 cos 2u2)^AZ 2 BZ& 1
2u2 2 sin 2u1)^A1B2 1
&} 1 {(cos 2u1 1 cos

^AZ 2 BZ& 1 (sin 2u1 1 sin
^A1B2 1 A2B1&} XZ]

1
2(P3 2 P4 2 P5 1 P6)

ZBZXZ&
1

2Î2
(P1 2 P2 2 P3 2 P4 1

P5 1 P6 1 P7 2 P8)
LE
ed

2
1&

1

os
in

2B1

u2)
u1)

^XZ

^2A

Z 1

os
in

2B1

u2)
u2)

^4A
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12 DORAI AND KUMAR
or equivalently,

^m5& 5 Î2F L13

1 1 sin2u1
1

L25

1 1 sin2u2

2
L47

1 2 sin2u1
2

L68

1 2 sin2u2
G

^m6& 5 Î2@L 12 2 L 78#

or equivalently,

^m6& 5
1

Î2
F L14

1 2 sin 2u1
2

L26

1 2 sin 2u2
1

L37

1 1 sin 2u1

2
L58

1 1 sin 2u2
1

L13

1 1 sin 2u1
2

L25

1 1 sin 2u2

1
L47

1 2 sin 2u1
2

L68

1 2 sin 2u2
G

^m8& 5 Î2F L14

1 2 sin 2u1
2

L26

1 2 sin 2u2

2
L37

1 1 sin 2u1
1

L58

1 1 sin 2u2
G

or equivalently,

^m8& 5 Î2F L13

1 1 sin 2u1
2

L25

1 1 sin 2u2

2
L47

1 2 sin 2u1
1

L68

1 2 sin 2u2
G . [7]

In order to experimentally measure cross correlation
trongly coupled spin systems using the above modes pi
e have carried out inversion recovery experiments on
ibromonitrobenzene (dissolved in deuterated benzene)
xperiments have been performed on a Bruker AMX 400-M
pectrometer at room temperature. The chemical shifts
oupling constants in this three-spin system are obtaine

dA 5 6.743 ppm,dB 5 6.71 ppm,dX 5 7.375 ppm,JAB 5 8.53
Hz, andJBX 5 2.1 Hz. The splitting due to the para-coupl
JAX is too small to be observed in this system. Equilibr
values are zero for all modes except^m2& and ^m4&.

Nonselective inversion recovery experiments were
formed to invert the modeŝm2& and ^m4& and monitor thei
elaxation (solely through cross-correlation mechanisms) t
MQM modes ^m5&, ^m6&, and ^m8&. The spectra and th

evolution of the various LMQM modes are plotted in Figs
and 3. A small flip angle (100) pulse has been used to meas
the population differences under the linear approximation14).
in
re,
5-
he
z
nd
as

r-

he

e

An imperfectp pulse accounts for the creation of some m
tispin order even at the beginning of the relaxation inte
Since some of the peaks in the AB part of the spectrum s
a significant overlap, this part of the spectrum was fitted
six Lorentzians in order to evaluate the integrated line inte
of each component. The curves obtained for the LMQM m
containing cross-correlation information were fitted to biex
nentials and the cross-correlation rateG2,5 calculated in th
initial rate approximation is 0.017 s21. The amount of magn-
tization transferred via CSA–DD cross correlation in
present case is rather small ('1.0% of equilibrium^m2& mag-
netization), and it has been possible to extract the same
LMQM modes in a straightforward manner. The buildup of
modeŝ m6& and^m8& was not observable due to weak dipo
interactions involving the spatially distant X spin.

From the various sets of operator definitions of magne
tion modes for different spin systems, it is clear that
single-transition operator definitions in the eigenbasis o
static Hamiltonian are conceptually simple and physic
meaningful, making them a natural choice for any spin sys

III. REMOTE CROSS CORRELATIONS IN
LONGITUDINAL RELAXATION

Cross correlations which do not explicitly depend on
distance of other spins from the spin(s) being considere
termed “remote” and contribute to the transverse relaxatio
weakly coupled spin systems (29–32). It has been noted (32)
hat such correlations in weakly coupled spin systems affe
ransverse relaxation of single- and multiple-quantum co
nces and contribute to differential line broadening in
resence ofJ couplings and/or direct cross correlations. S
emote cross correlations also crop up in rotating frame r
tion experiments (for example, ROESY and its variants

he spin locking causes the relaxation to become a mixtu
ongitudinal and transverse relaxation (37).

We note here that such “remote” terms affect longitud
elaxation as well. In a strongly coupled two spin (A
ystem, the cross correlation between the CSA of spin A
hat of spin B affects the relaxation of the populations w
ontributions from the spectral density at zero andv fre-

quencies. In an ABX spin system, remote terms like
CSA–CSA cross correlations between spins A and B an
correlations between the CSA of spin A and the dip
interaction between spins B and X and similarly between
CSA of spin B and the dipolar interaction between spin
and X at frequencies zero andv contribute to longitudina
relaxation. In the limit thatu 3 0 these remote cro
correlations disappear, as is to be expected for we
coupled spin systems.

Calculations have been performed on homonuclear stro
coupled two-spin (AB) and three-spin (ABX) systems to a
lyze the effects of remote cross correlations. Explicit calc
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13LONGITUDINAL RELAXATION OF STRONGLY COUPLED SPINS
tions of all elements of the relaxation matrix have been ver
using the software package “Mathematica.” The trans
probabilitiesWab have been clubbed into a column vectorW

nd expanded (matrix-fashion) in terms of auto- and c
orrelation spectral densities, in order to achieve a “picto
epiction of the dependence of variousW’s on different spec

ral densities (38).

. The AB Spin System

The contributions of different spectral densities to long
inal relaxation of the strongly coupled AB spin system ca
xpressed as

W AB
SQ/MQ 5 2O

n50

2

A~nv! SQ/MQJauto~nv!

1 C~nv! SQ/MQJcross~nv!, [8]

FIG. 2. The 1H inversion recovery spectra of 2,5-dibromonitrobenzen
spins has been performed and only the AB part of the total spectrum is
d
n

s-
l”

-
e

where

W AB
SQ 5 3

W13

W24

W12

W34

4 ; W AB
MQ 5 FW14

W23
G [9]

with theWab referring to various single-quantum (or multip
quantum) transition probabilities, and the auto- and cr
correlation spectral density vectors being defined as

Jauto~nv! 5 F JAA~nv!
JBB~nv!

JABAB~nv!
G ; Jcross~nv! 5 FJAB

A ~nv!
JAB

B ~nv!
JAB~nv!

G .

[10]

The auto- and cross-correlation coefficient matricesASQ/MQ(nv)
and CSQ/MQ(nv), respectively, have been computed in

lotted as a function of the relaxation time. A nonselective inversion of a
own here. A small flip angle (10°) detection pulse has been used.
e, p
sh
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14 DORAI AND KUMAR
eigenbasis. Only spectral densities at the frequencyv contrib-
te to the single-quantum transition probabilities wherea
ultiple-quantum transition probabilities have contributi
nly from spectral densities at zero and 2v frequencies. Ex

plicit calculation of the various coefficient matrices for the
spin system yields the transition probabilities for the sin
quantum levels as

The difference in the single-quantum transition probabil
W13 andW24 is given by

W13 2 W24 5 sin 2uJABAB~v! 1 2~1 1 cos 2u !JAB
A ~v!

14 sin2uJAB
B ~v! 1 4 sin 2uJAB~v!. [12]

FIG. 3. The evolution of the LMQM modeŝm2& and^m5& plotted as a
CSA–DD cross correlations.

W AB
SQ 5 2 3

~1 1 cos 2u ! 2 sin2u

~1 1 cos 2u ! 2 sin2u

2 sin2u ~1 1 cos 2u !

2 sin2u ~1 1 cos 2u !

1 3 ~2sin 2u 1 cos 2u 1 1!
~2sin 2u 2 cos 2u 2 1!

~sin 2u 1 2 sin2u !
~sin 2u 2 2 sin2u !

~2s
~2s

~sin 2
~sin 2
e
s

-

s

In the weak coupling limit, these two transition probabilit
can be identified as belonging to the “A” spin and are e
in the absence of cross correlations. The presence of s
coupling and/or cross correlations (including the di
CSA–DD cross-correlation spectral densitiesJAB

A (v) and
JAB

B (v) and the remote CSA–CSA cross-correlation spe
density JAB(v)) lifts this degeneracy. For equivalent s

systems (u 3 p/4), where the sum mode (the total s
magnetization or the sum of all the single-quantum tra
tion probabilities) is the only physical observable, the c
tribution of these remote terms to the longitudinal relaxa
cancels out.

The expression for the multiple-quantum (double and z
level transition probabilities is obtained as

ction of the recovery timet. The emergence of thêm5& mode is due solely t

2 sin 2u!

1 sin 2u!

1 sin 2u!

2 sin 2u!
4F JAA~v!

JBB~v!
JABAB~v!

G
u 1 2 sin2u ! 2 sin 2u
u 2 2 sin2u ! 22 sin 2u

cos 2u 1 1! 22 sin 2u
cos 2u 2 1! 2 sin 2u 4FJAB

A ~v!
JAB

B ~v!
JAB~v!

G . [11]
fun
~1
2

~1
2

~1
2

~1
2

in 2
in 2
u 1
u 2
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15LONGITUDINAL RELAXATION OF STRONGLY COUPLED SPINS
W AB
MQ 5 F 0 0 0

2 4
3 sin22u 2 4

3 sin22u 2 1
3 ~1 2 sin22u !G

3 F JAA~0!
JBB~0!

JABAB~0!
G

1 F 0 0 0
4
3 sin 2u cos 2u 2 4

3 sin 2u cos 2u 8
3 ~1 2 sin22u !G

3 FJAB
A ~0!

JAB
B ~0!

JAB~0!
G 1 F 0 0 22

0 0 0 GF JAA~2v!
JBB~2v!

JABAB~2v!
G .

[13]

In the weak coupling limit, the zero-quantum transition pr
ability W23 depends only on the dipolar autocorrelation spe
density at zero frequency, while in the presence of st
coupling, all auto- and cross-correlation spectral densities
tribute. The double-quantum transition probabilityW14, on the
other hand, has a sole contribution from the dipolar auto
relation spectral density at 2v, regardless of the strength of t
coupling and has no contribution from cross correlations.

The matrix containing the transition probabilitiesWab (both
single and multiple quantum) as its elements is related toG
matrix (Eq. [3]) by the transformationG 5 VWV21. The
transformation matrixV for the AB system is given by

V 5
1

2 3
1 1 1 1
Î2 0 0 2Î2
0 Î2 2Î2 0
1 21 21 1

4 . [14]

ence, the various elements of theG matrix (which are th
ifferent self- and cross-relaxation rates of the LMQM mo
re given in terms of the transition probabilities as

r1,4 5 1
2 @W12 1 W34 1 W13 1 W24 1 4W14#

s 2,3
1,4 5 1

2 @W13 1 W24 2 W12 2 W34#

d 1,4–2,3
1,4 5

1

Î2
@W12 2 W34 1 W13 2 W24#

r2,3 5 1
2 @W12 1 W34 1 W13 1 W24 1 4W23#

d 1,4–2,3
2,3 5

1

Î2
@W13 2 W24 2 W12 1 W34#

r1,4–2,35 @W12 1 W34 1 W13 1 W24#. [15]
-
al
g
n-

r-

)

Similar expressions can be derived for the ABX system as

B. The ABX Spin System

The longitudinal relaxation of the ABX spin system
contributions from both remote CSA–CSA cross correlat
and remote CSA–DD cross correlations. The various sin
quantum and multiple-quantum transition probabilitiesWABX

SQ/MQ

can be expressed in terms of column vectors as

W ~AB!
SQ 5 3

W13

W14

W25

W26

W37

W47

W58

W68

4 ; W ~X!
SQ 5 3

W12

W35

W46

W78

4 , [16]

where the single transitions have been grouped as belong
the AB multiplet or the X spin. The six double- and ze
quantum transition probabilities have been grouped into
column vectors

W ABX
DQ 5 3

W17

W28

W16

W38

W15

W48

4 ; W ABX
ZQ 5 3

W34

W56

W24

W57

W23

W67

4 . [17]

The contribution of remote cross-correlation terms to long
dinal relaxation, for the various single- and multiple-quan
transition probabilities, is obtained as

~W ~AB!
SQ ! remote5 3

sin 2u1 sin 2u1 22 sin 2u1

sin 2u1 sin 2u1 22 sin 2u1

sin 2u2 sin 2u2 2 sin 2u2

2sin 2u2 2sin 2u2 22 sin 2u2

sin 2u1 sin 2u1 22 sin 2u1

sin 2u1 sin 2u1 22 sin 2u1

sin 2u2 sin 2u2 2 sin 2u2

2sin 2u2 2sin 2u2 22 sin 2u2

4
3 F JBX

A ~v!
JAX

B ~v!
JAB~v!

G [18]
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16 DORAI AND KUMAR
~W ABX
ZQ ! remote5 3

2
3 ~1 2 cos 4u1! 2

3 ~1 2 cos 4u1!

2 2
3 ~1 2 cos 4u2! 2 2

3 ~1 2 cos 4u2!
0 0
0 0
0 0
0 0

2 4
3 ~1 2 cos 4u1!

2 4
3 ~1 2 cos 4u2!

0
0
0
0

4F JBX
A ~0!

JAX
B ~0!

JAB~0!
G . [19]

he single-quantum transition probabilities that belong to
B multiplet (it is no longer possible to distinguish transitio
s belonging to a spin, as the spins are now strongly cou
ave contributions from the CSA–CSA remote termJAB and

the CSA–DD remote spectral densitiesJBX
A andJAX

B , all at the
frequencyv. These contributions vanish in the weak coup
limit and as is expected, the single-quantum transition pr
bilities belonging to the X spin (W (X)

SQ) are not affected by suc
remote cross correlations. Only the zero-quantum trans
W34 and W56 have contributions from the CSA–CSA a

SA–DD remote cross correlations at zero frequency. T
erms drop out in the weak coupling limit. The double-quan
ransition probabilities have contributions from all the auto
elation dipolar spectral densities at 2v and a contribution (tha

depends on the coupling strengthu) from the DD–DD cross
correlation spectral densityJAXBX at the frequency 2v. They do
not have any contributions from remote cross correlations
other remote cross correlations that involve the CSA of th
spin, namelyJAX, JBX, andJAB

X , do not contribute.

IV. CONCLUSIONS

We describe a method, based on a generalized set of
netization modes, for quantifying cross correlations in stro
coupled systems. The applicability of this method has
experimentally demonstrated for a strongly coupled spin
tem. Since strong coupling reintroduces the contributio
CSA auto- and CSA–CSA cross-correlation spectral den
at zero frequency to longitudinal relaxation, this modes me
is applicable to the study of large biomolecules having stro
coupled spins such as some carbohydrates, aliphatic carb
protein side chains, and nucleic acids, where strong cou
effects persist in diastereotopic protons even at high
strengths (39, 40).
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