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A generalized set of magnetization modes for quantifying cross-
correlation contributions to longitudinal relaxation in strongly
coupled spin systems is described in this paper. Such a set of
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are additional pathways (apart from those of cross correlation
for the creation of longitudinal spin order in such systems, du
to the fact that strong coupling factors contribute unequally t

modes (called longitudinal multiple-quantum modes) is used to
unravel cross-correlation information in strongly coupled systems,
where the strength of the J coupling tends to obscure such effects.
The applicability of such methods is demonstrated for a small
molecule which exhibits some strong coupling effects even at high
magnetic field strengths. The contribution of “remote” cross cor-
relations to the longitudinal relaxation of strongly coupled spins is
detailed. © 2000 Academic Press

Key Words: strong coupling; cross correlations; single-transition
operators; longitudinal multiple-quantum modes; remote cross
correlations.

the relaxation rates of various transitions of a sgis«17. At
first sight, it appears as if it is no longer possible to define
simple basis set of magnetization modes for strongly couple
spins and that the emergence of longitudinal spin order durir
the course of a relaxation experiment is no longer an exclusiy
signature of cross-correlation processes. Nevertheless, as \
be shown, an attempt to retain the idea of magnetization mod
does lead to a conceptual simplification in the treatment ¢
relaxation in such systems.

We define a complete orthonormal set of magnetizatio
modes corresponding to the expectation values of variol
zero-quantum and double-quantum single-transition operato
calculated in the eigenbasis. We call our set of modes
defined “longitudinal multiple-quantum modes (LMQM), as

The Redfield—Bloch semiclassical density operator theorydpposed to the usual single-spin or multispin modes, whic
widely used to quantify spin relaxatiori,(2). Although the refer to longitudinal spin order. These modes are valid for an
form of the Redfield equation is mathematically elegant, corgpin system, regardless of the coupling information encoded
puting individual matrix elements for different spin systems ig. For systems with an inherent molecular symmetry (fo
tedious and often provides little insight into multispin relaxexample, magnetically equivalent spins), this symmetry can |
ation. A transformation to the basis of “modes,” many of whickxploited to define a set of symmetrized mod2s-23. Sim-
can be directly related to physical observables, proves maggly, for systems of nonequivalent (weakly coupled) spins, -
useful B—6). For longitudinal relaxation, these modes (knowget of multispin order modes can be defined, each mode havi
as “magnetization modes”) are essentially various linear cogwell-defined parity under spin inversio®4( 29. Such sym-
binations of the populations of different energy levels, andletrized and/or multispin modes can always be constructed
have been used with great success to gain tangible structgighsets of the more general LMQM modes. For systems wi
and dynamic information in weakly coupled spin systemstrong coupling and no inherent molecular symmetry, definin
(7, 8). Signatures of cross-correlation processes in weakly causimplified set of magnetization modes is no longer possib
pled spin systems are immediately recognizable as an unecu@d one has to remain within the matrix of the complet
recovery of different transitions of a spin multiplet—the “mul{ MQM modes (Fig. 1).
tiplet effect.” It is not as evident when second-order effects areRecent experiments designed to measure cross correlati
present, and most previous work on relaxation in strongiy transverse spin relaxation have generated much intere
coupled systems has remained within the framework of thi26—-29. An interesting feature of these experiments is th
Redfield relaxation matrixd—14. It has been noted that theremeasurement of “remote” cross correlations, terms which ha

no explicit distance dependence from the spin of interes

! E-mail: kavita@physics.iisc.ernet.in. Several Wo_rkersZ9—32) have pointgd out the existence of

2To whom correspondence should be addressed. E-mail: aninm&@ICh terms in the transverse relaxation of weakly coupled sp
physics.iisc.ernet.in. systems. We note in this paper that such remote cross cor
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LONGITUDINAL RELAXATION OF STRONGLY COUPLED SPINS 9

Generalised as the population combinations corresponding to these moc
L for a two-spin strongly coupled system (AB) are represented |

. | Table 1.
Equivalen gggwgd The superscript (1, 4) refers to the double quantum and (
y spins Dins 3) to the zero quantum of the AB spin system (with the

Symmetrised | | Multispin . eigenstates labeled H9 = |aa), |2) = cosf|aB) + sin 6]Ba),
Modes Modes Modes [3) = —sin 8laB) + cos6|Ba), and|4) = |BB), where tar) =
J/6,s, J being the coupling constant adg; the difference in
FIG. 1. The classification of magnetization mode sets for different spiphemical shifts of the spins). A valid basis set of magnetizatio
systems. modes for this strongly coupled two-spin system (Table 1) i
one that remains within the zero-quantum-double-quantu
subspace of the single-transition operatoi8<2Q. In the
lations affect the longitudinal relaxation as well of stronglyyeak coupling limit  — 0), the operator definitions in Table

coupled spins. 1 reduce to that for an AX spin system. Since single-spi
magnetizationsA, and B, are well-defined quantities for

Il. LONGITUDINAL MULTIPLE-QUANTUM weakly coupled systems (AX), one can construct the multispi

MAGNETIZATION MODES modes (commonly used in most experiments) as linear cor

. ) ) binations of these LMQM modes. The evolution of the LMQM
This paper concentrates on two relaxation mechanisms dosdes for the AB system is obtained as:

inant at high magnetic fields, namely the intramolecular di-
pole—dipole (DD) interaction and the chemical shift anisotropy

(CSA) of spin3 nuclei. The evolution equation of the ortho- LU+ 133
normalized modes¥;} has the same structure as the Redfield d VE (154
equation, Tdt| (2339
2n (5= 159
d
dat vi(t) = 211 Iv(t), [1] 0 0 0 0
_ 0 161,4(A) O'%j‘s‘(A + C) 22%:3—2,3(C)
whereTl';; is a 2 X 2" symmetric matrix. The density operator 0 ‘TzilsgA +0C) gg,a(A +C) 812.4A+C)
can be expanded in terms of a complete set of orthogonal base L0 81224C)  813.dA+C)  pra2dA)

operators B4} with many possibilities for such basis sets. We

prefer to express magnetization modes as combinations of LU+ 123

single-transition operatord8-20Q. A single-transition opera- V@(A(I 14))

tor is associated with the transition between two arbitrary X 2(A(129) . [3]
energy levelsr) and|s), which may represent a zero-, single-, ) k 14 g )3

or multiple-quantum transition and can be treated as a virtual 2 (A" = 15))

two-level system. The operators can be characterized thus:

SISy — (S S, Y TABLE 1

GIIBLD = (8 + 8isdy) The LMQM Modes for the AB System, Defined in the

(i[1]iy = (8i:8;s + 8is6;)/ 2 Eigenbasis of the Static Hamiltonian

([ =1 (=885 + 868/ 2 LMQM modes in

I eigenbasis Product operator modes Population combination

<||| z |J> = (SirSjr - 8isSjs)/z- [2]

Kot +13% (1) 3Py + Py + Py + Py)
These operators are defined in the eigenbase of the HamiltQ5 1+ (A, + By 1P, — Py
nian which makes them a suitable choice for describing\f us s V2 \f
strongly coupled spins. 2127 ~/210s 20(A; = By) — (P, — P
sin 20(A"B~ + A'B")} N

A. LMQM Modes for an AB System ot — 159 (2A;B2) APy = P2 = Py + Py)

. The LMQM mpdes and .t_heir operator representation innote. The product operator definitions and corresponding population con
different bases (single transition and product operator) as WeHations are also shown.
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The p, terms in the real symmetrit matrix for the AB The picture simplifies in the weak coupling limit as now botk
system defined above denote the self-relaxation of a LMQMe V(%% and the VV2(12®) modes evolve into longitudinal
mode u while the oy (=0) and 8} (=86,) terms refer to the two-spin order solely through CSA-DD cross correlations and &
cross relaxation between LMQM modegs and v. The A modes self-relax solely through autocorrelation terms.
signifies the presence of autocorrelation terms in the element of
the relaxation matrix and th€ denotes cross-correlationB. LMQM Modes for an ABX System
terms. TheA in (Am) denotes the deviation of modefrom its An orthonormalized set of LMQM modes for a three-spir

thermal equilibrium value. The factorization of the matfix Agy system (with two of the spins A and B strongly coupled
into two blocks corresponding to symmetric and antisymmettjg oach other and weakly coupled to spin X), is defined i
modes (which do not couple unless CSA-DD cross correlpz e 2.

tions are present), valid for weakly coupled spins, is now no 1o superscripts (1, 7) and (2, 8) refer to the two doubl

longer pogsible, as the concept of spin_ inversion symmetryd'aanta of the A and the B spins while (3, 4) and (5, 6) refer t
not meanmgful for strongly coupled spins. _ . the zero quanta of these spins (Whie= aaa, [2) = aapB,
The various elements of the AB relaxation matrix are ol?3> = cos 0.aBa + sin 0, Baq, |4 = —sin 6.aBa + coS
tained in terms of spectral densities as 0. Baa, |5) _ C0S0_aBp + sin 0'730‘3 &) = —sin 0 BB +
cos 6_Bap, |7) = BBa, and|8) = BLB, with the usual defi

P14= —2Jan(0) — 2Jgg(@) — Jngae(®) — 4dpens(®)  nitions of 6. (34)). The labels (1, 2), (3, 5), (4, 6), and (7, 8)

23- _2 cos BJ + 2 cos BJ refer to the single-quantum transitions of the X spin. Here, th

T4 (@) ee() single-transition operator basis for the LMQM modes encon

—2sin 20J3%:(w) — 2 sin 2038;(w) passes the double-quantum—zero-quantum subspace of the

strongly coupled spins and the single-quantum subspace of 1

8%:3—2,3: 2\/'5[‘]28(0)) + J3s(w)] weakly coupled spin.

prs= —41 - cos 4)(Ian(0) + Jus(0)) — 2Jpa(@) AlthOL_Jgh the overall str_uc_tu_re of thE matrix for the ABX
system is rather complex, it is interesting to note the existence
— 2Jga(w) + 8(1 — cos 49)J,5(0) some off-diagonal relaxation terms that arise purely from cro:
. correlations and are free from any strong coupling effects. The
—3(1 + cos 40)Jagne(0) — Jnpas() I" (relaxation) matrix elements in terms of spectral densities ar

+ 5 sin 46375(0) — 5 sin 46J35(0
S A0 7S A0(0 1% = 2,/2[ Ifi(w) + Io(w)]

823 5= 2.2 cos DINs(w) — 22 cos DI3s(w) 26— 20 IA () + I8 ()]
+ 42 sin 200 ,5(w) + 22 Sin 20 ppas(w) 29 = — 2] Jugax (@) + Jngox(@)]
Pra-23= —Aan(0) — 4Jgs(0) — 2Jppap(w). (4] r46= Z\EUXX(“’) + I35(w)]
J;; here refers to the cross-correlation spectral density between 4% = =2 ex(w). [5]

the CSAs of spins andj, J; denotes the autocorrelation

spectral density of the CSA of spin J¥ denotes the cross- The modesm,) and(ms) are coupled through a sum of the
correlation spectral density of the CSA of spinwith the CSA-DD cross-correlation ratels(w) andJzs(w). The sum
dipole of i andj, and J;, refers to the dipolar interaction Of the two CSA-DD ratesx(w) andJex(w) can be estimated
between the pairs of dipold§ and kl. The expressions for from the evolution of modémg) from the modeg(m,) or vice
these spectral densities are contained3®).(It is to be noted Versa. The modesn,) and(ms) are coupled through a sum of
that thed};_,,term of thel relaxation matrix, which couples the DD—-DD cross-correlation ratégsax (») andJ assx(w). The
the mode<12* and(I}* — 124, is free from strong coupling mode(m,) is relaxation coupled to the modms) through the
and has contributions solely from CSA-DD cross correlationSA-DD rates) () and Jgx(w). This mode also couples to
The measurement of this relaxation rate (in the initial ratee mode(mg) solely through the dipolar cross-correlation
approximation) is hence a direct measure of such cross cogectral density xex ().

lations. TheX15* + 15° mode is the sum of all the level Physical observables, LMQM modes, and experiments on
populations and hence does not evolve in time. Xhg* — strongly coupled system.n general, sets of LMQM modes
15 signifies longitudinal two-spin order and can be createate designed to be directly relatable to experimental line ir
from the’V/2(13%) mode via cross correlations alone and frontensities, thus preserving their intuitive physical interpretatior
the V2(12°) mode from a combination of auto- and crossThe density matrix during the relaxation period remains diac
correlation terms with strong coupling factors. onal (for experiments designed to measure longitudinal rela
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TABLE 2
The LMQM Modes Defined for an ABX Spin System

Mode label LMQM modes in eigenbasis Product operator modes Population combinations

(my) of +1TT 13T+ 15°) 5D Sa(Pi+ P+ P+ P+

1 (a
m 2 \/i
Ps + Ps + P; + Py)
(my) (27 + 129 (A; + By) 3Py + P, — P — Py)

(ms) A3+ 135 [3(cos 20, + cos D (A, — B,) + Py — P, + Ps — Py)
(sin 20, + sin 20 _)(A*B~ +
A" B")} + {(cos 20, — cos
20_)(A; — By) + (sin 20_ — sin
20.)(A"B™ + A"B)X,]

(my) S LA ERR A E 5 (X2 s5(Pr— P2+ Pat Py
_PS_P6+P7_PE)

(m) ST 18T =13t = 189 5 (2AB2) 75(Pi+ P2 = Py = P
— Ps — Pg + P; + Py)

(me) 37 =139 (2(A; + B)Xy) 3Py — P, — P, + Py)

(m;) (2 =139 [X(cos 2, — cos D_)A; — By) + 3Py — Py — Ps + Pyg)

(sin 20 — sin 20.)(A"B™ +

A" B")} + {(cos 20, + cos

20 _)(A; — Bz) + (sin 26, + sin
20 )A'B™ + AB)}IX,]

(mg) S LA FE A 5 (4ABX,) 75(P1 — P2 = Py — Pyt
Ps + P + P; — Py)

ation). Hence a read pulse is required at the end of the evolutiorThe ABX spin system.The modes of interest to us (since
interval to convert magnetization modes into observable magtieey directly encode cross-correlation information) are given i
tization. The various LMQM modes are linear combinations ¢érms of SLIs by
standard line intensities (SLI8Y)), where SLlIs are experimental 1

line intensities obtained by a small angle detection pulse.

The AB spin system.In terms of standard line intensities

(my) = = Lis N L26 N Ls;
27 21—sin20, 1-—sin20_ 1+ sin26.

the modes are given by§) N Lse N Lis N Las
1+sin20. 1+sin20, 1-—sin26_
1 L L
2114 = — [ - + 24 La7 Les
Vetz [o —
V211 =sin26) (1 + sin 20) "1 -sin20, " 1-sin26
L, Lss ]
+ : + . 1 Lss
1+ sin 20 1—sin 26 = =
( ) ) (my) [le Lt {c082(9+ -0.)
1 L L
P23y = [ ¥y 24 L L
Velz 1 — sin 26 1+ sin 20 16 ®
\E ( ) ) * cosi(h, — 6.) * sin?(6, — 6.)
. L12 . L34 :| L36
(1+sin29) (1-sin?209) +S|n2(0+—0_)}:|
1 Lis Loy L L
T l4a 23y — _ 14 26
2 (1" 1) {(1—sin 20) (1 + sin 29)] (mg) = \E[l—sin 20. " 1—sin20

_ |: L12 . L34 :| [6] L37 L58
(1+sin26) (1 - sin20) 1+sin20. 1+sin20_
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or equivalently,

L1

DORAI AND KUMAR

L2s

_ Y
(mg) = \/2[1 +sin20, | 1+ sin20_

L7

L68

1-sin20, 1-sin20_

(mg) = \E[le — Le]

or equivalently,

An imperfect# pulse accounts for the creation of some mul-
tispin order even at the beginning of the relaxation interva
Since some of the peaks in the AB part of the spectrum sho
a significant overlap, this part of the spectrum was fitted wit
six Lorentzians in order to evaluate the integrated line intensi
of each component. The curves obtained for the LMQM mode
containing cross-correlation information were fitted to biexpo
nentials and the cross-correlation rdié® calculated in the
initial rate approximation is 0.017°'§ The amount of magnre
tization transferred via CSA-DD cross correlation in the
present case is rather sma#1.0% of equilibrium(m,) mag
netization), and it has been possible to extract the same usi

(mg) = i [ '-_14 _ '—_26 n '—_37 LMQM modes in a straightforward manner. The buildup of the
VE 1-sin20, 1-sin20. 1+ sin26, modes(mg) and{mg) was not observable due to weak dipolatr
L L L interactions involving the spatially distant X spin.
— 58 + 13 _ 25 From the various sets of operator definitions of magnetizz
1+sin26.  1+sin20, 1+sin20.  tion modes for different spin systems, it is clear that the
L, Les single-transition operator definitions in the eigenbasis of th
+ 1—sin20. 1—sin20 ] static Hamiltonian are conceptually simple and physicall
N - . . X X
meaningful, making them a natural choice for any spin syster
(mg) = E[ Lig _ Los
8 Vo1 1 — sin 20, 1-—sin26_ I11. REMOTE CROSS CORRELATIONS IN
LONGITUDINAL RELAXATION
_ L37 + L58 :|
1+sin20, 1+ sin26_ Cross correlations which do not explicitly depend on the

or equivalently,

L1

Los

j— [ p—
(mg) = \/2[1 +sin20, 1+ sin20_

L47

L68

distance of other spins from the spin(s) being considered a
termed “remote” and contribute to the transverse relaxation ¢
weakly coupled spin system29-32. It has been noted3@)

that such correlations in weakly coupled spin systems affect tl
transverse relaxation of single- and multiple-quantum cohe
ences and contribute to differential line broadening in th
presence ofl couplings and/or direct cross correlations. Sucl

~1-—sin26. - 1-sin26 |- [7] remote cross correlations also crop up in rotating frame rela
ation experiments (for example, ROESY and its variants) ¢
the spin locking causes the relaxation to become a mixture
In order to experimentally measure cross correlations ongitudinal and transverse relaxatiasiz).
strongly coupled spin systems using the above modes picturéyWe note here that such “remote” terms affect longituding
we have carried out inversion recovery experiments on 2f&laxation as well. In a strongly coupled two spin (AB)
dibromonitrobenzene (dissolved in deuterated benzene). Bystem, the cross correlation between the CSA of spin A ar
experiments have been performed on a Bruker AMX 400-MHhat of spin B affects the relaxation of the populations witt
spectrometer at room temperature. The chemical shifts acmhtributions from the spectral density at zero andre-
coupling constants in this three-spin system are obtained qagencies. In an ABX spin system, remote terms like th
S, = 6.743 ppmPs = 6.71 ppmSx = 7.375 ppmJ,s = 8.563 CSA-CSA cross correlations between spins A and B and tt
Hz, andJgx = 2.1 Hz. The splitting due to the para-couplingorrelations between the CSA of spin A and the dipola
Jax is too small to be observed in this system. Equilibriunmteraction between spins B and X and similarly between th
values are zero for all modes excépt,) and(m,). CSA of spin B and the dipolar interaction between spins /
Nonselective inversion recovery experiments were peand X at frequencies zero and contribute to longitudinal

formed to invert the mode&m,) and{(m,) and monitor their relaxation. In the limit that§ — 0 these remote cross
relaxation (solely through cross-correlation mechanisms) to therrelations disappear, as is to be expected for weak
LMQM modes (ms), {m¢), and (mg). The spectra and the coupled spin systems.

evolution of the various LMQM modes are plotted in Figs. 2 Calculations have been performed on homonuclear strong
and 3. A small flip angle (19 pulse has been used to measureoupled two-spin (AB) and three-spin (ABX) systems to ana
the population differences under the linear approximatiah. ( lyze the effects of remote cross correlations. Explicit calcule
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T =12s
TMM
T =4 s
W
T=3s W
T = 50 ms
No,
xH Br
Br HA
HB
I 6.]80 6.‘;5 6.:70 6.‘65 ppl’nI

FIG. 2. The'H inversion recovery spectra of 2,5-dibromonitrobenzene, plotted as a function of the relaxation time. A nonselective inversion of all the
spins has been performed and only the AB part of the total spectrum is shown here. A small flip angle (10°) detection pulse has been used.

tions of all elements of the relaxation matrix have been verifiadhere

using the software package “Mathematica.” The transition

probabilitiesW,, have been clubbed into a column vectr W

and expanded (matrix-fashion) in terms of auto- and cross- ng

correlation spectral densities, in order to achieve a “pictorial” W39 = W24 D W = {
depiction of the dependence of variodss on different spec- Wi,j

tral densities §8).

W14]

W,s 9]

with the W, referring to various single-quantum (or multiple-

quantum) transition probabilities, and the auto- and cros
The contributions of different spectral densities to longitcorrelation spectral density vectors being defined as

dinal relaxation of the strongly coupled AB spin system can be

A. The AB Spin System

expressed as Jun(ne) 1 (nw)
Jaud Nw) = Jes(Nw) v JoosdNw) = JﬁB(nw) .
2 Jnens(Nw) Jae(Nw)
WRRM= =3 A(nw) SN, nw) [10]
n=0

The auto- and cross-correlation coefficient matriéé8"(nw)
+ C(nw) MY (nw), [8] and C**™Ynw), respectively, have been computed in the
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FIG. 3. The evolution of the LMQM modeém,) and{ms) plotted as a function of the recovery timeThe emergence of thgns) mode is due solely to

CSA-DD cross correlations.

eigenbasis. Only spectral densities at the frequencyntrib-

In the weak coupling limit, these two transition probabilities

ute to the single-quantum transition probabilities whereas than be identified as belonging to the “A” spin and are equz
multiple-quantum transition probabilities have contributioni® the absence of cross correlations. The presence of stro
only from spectral densities at zero an@ #equencies. Ex- coupling and/or cross correlations (including the direc
plicit calculation of the various coefficient matrices for the ABCSA-DD cross-correlation spectral densiti@%(w) and

spin system yields the transition probabilities for the singlé)is(w) and the remote CSA-CSA cross-correlation spectr:

quantum levels as

(1 + cos ) 2 sin’g (3 — sin 20)
(1 + cos ) 2 sinfo (3 + sin 20) Jan(w)
WiE = 2 sinfo (1+cosP) (A+sin2 Joel )
I (z + sin 26) ‘]ABAB(w)
2 sine (1+cos2) (- sin20)
(—sin20+ cos P + 1) (—sin 20 + 2 sin*d) 2 sin 20 3 (o)
(—sin260 —cos M — 1) (—sin 20 — 2 sin*d) —2 sin 20 JQB( )
(sin20 + 2 sifh) (sin20+cos2P+ 1) —2sin 20 JAB(w) : [11]
(sin20 — 2 sin’) (sin20—cos2P —1) 2sin29 ABL®

density J,s(w)) lifts this degeneracy. For equivalent spin

The difference in the single-quantum transition probabilitiesystems § — w/4), where the sum mode (the total spin

W, ; andW,, is given by

W3 — W,y = sin 20dapas(@) + 2(1 + cos 20)Jas(w)
+4 sin?I8:(w) + 4 sin 20),5(w). [12]

magnetization or the sum of all the single-quantum trans
tion probabilities) is the only physical observable, the con
tribution of these remote terms to the longitudinal relaxatiol
cancels out.

The expression for the multiple-quantum (double and zerc
level transition probabilities is obtained as



LONGITUDINAL RELAXATION OF STRONGLY COUPLED SPINS

15

vo 0 0 0 Similar expressions can be derived for the ABX system as we
Wie = [— $sin?260 —3sin?260 —3(1— sinzze)]
B. The ABX Spin System
[ Jan(0) ]
X | Jgs(0) The longitudinal relaxation of the ABX spin system has
Jaens(0) contributions from both remote CSA—CSA cross correlation
and remote CSA-DD cross correlations. The various singl
" {4 . 0 Y 0 . 0 , ] quantum and multiple-quantum transition probabilitig#ge,"°
ssincosd —zsinBcosd (1—sin°20) | can be expressed in terms of column vectors as
Jﬁs(o) Jaa(2w)
x[J?\B(m 100 o ][ Joe(20) ] W
Jas(0) Jneas(20) \N13
14
[13] W25 W12
W. W.
In the weak coupling limit, the zero-quantum transition prob- W) Wij D Wi = sz ' [16]
ability W,; depends only on the dipolar autocorrelation spectral W, Wyg
density at zero frequency, while in the presence of strong Wsg
coupling, all auto- and cross-correlation spectral densities con- L Wes

tribute. The double-quantum transition probability,, on the
other hand, has a sole contribution from the dipolar autocor-

relation spectral density a2 regardless of the strength of theyhere the single transitions have been grouped as belonging

coupling and has no contribution from cross correlations.

the AB multiplet or the X spin. The six double- and zero-

The matrix containing the transition probabiliti,, (both  guantum transition probabilities have been grouped into tt

single and multiple quantum) as its elements is related td'th,qumn vectors
matrix (Eqg. [3]) by the transformatiod’ VWV, The
transformation matri¥/ for the AB system is given by

W, | [ W, |
W W,
toro1 1 Wi W,
s 5 DQ _ 2Q —
V= } \ 2 OF OF - \/2 [14] W ABx Wg | W 28x Ws, [17]
2 0 \ 2 — Y 2 0 W15 W23
1 -1 -1 1 | Was ] [ W7

Hence, the various elements of thematrix (which are the 1he contribution of remote cross-correlation terms to longitu
different self- and cross-relaxation rates of the LMQM modeg), 5| rejaxation, for the various single- and multiple-quantun

are given in terms of the transition probabilities as

P14a= % [Wip + Way + Wig + Wy, + 4Wy,]
0'%:3 = % [Wiz + Wy, — Wi, — Way]
1,4 .
o 14-23= ? [Wip = Ways + Wig — W]
P23 = % [Wip + Wy, + Wi + Wy, + 4W,5]

1
2,3 —
07423 ? [Wis — Way — Wi, + Wyy]

P1,4-237 [Wip + Way + Wis + Woy.

transition probabilities, is obtained as

sin 20, sin20, —2sin 20,
sin 26, sin20, —2sin 20,
sin 20_ sin 20_ 2 sin 26_
(WS2) | —sin20_ —sin20_ —2sin 20_
(AB)/remote ™ | - gjn 26, sin20, —2sin 20,
sin 20, sin20, —2sin20,
sin 26_ sin 26_ 2 sin 20_
L —sSin20_ —sin20_ —2sin 20_|
Jéx(w)
X |:J,Ex(w)] [18]
[15] Jns(w)
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